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Abstract. Novel parametrically  energy-dependent
boundary functions, F, combined with a finite Z> basis
set, permit accurate and efficient calculation of scattering
wavefunctions for many energies. Both accuracy and
efficiency are achieved simultaneously because all the
necessary integrals are energy-independent and also
certain functionals, (H — E)|F), in the Schrédinger
equation are allowed to satisfy desirable boundary
conditions. In addition, slight modification of the
Schrédinger equation in the boundary region is shown
to be useful for improving the numerical accuracy when
a cutoff-radius-truncated basis set is used. The advan-
tages of the present approaches are demonstrated for the
one-dimensional Eckart barrier problem.
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1 Introduction

It is often necessary to use exact quantum mechanical
approaches if the most detailed information regarding
the scattering process of microscopic particles is required
[1]. A class of such approaches is composed of several
methods for solving the time-independent Schrédinger
equation (SE) in a numerically exact manner, in which
the scattering wavefunctions are calculated either ex-
plicitly (such as in the approaches of Jang and Light [2],
Mandelshtam and Taylor [3], and Kouri et al. [4]) or
implicitly (such as in the various Kohn variational
methods for K matrix [5], R matrix [6], T matrix and
scattering matrix of Miller and coworkers [7,8], and
log-derivative matrix of Manolopoulos et al. [9]). The
scattering wavefunctions in these methods may be
represented by linear combinations of a finite basis set.
Since the outcome of scattering is physically determined
inside some finite interaction region, all the above
approaches can produce exact scattering results in the
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limit of infinite size of the basis set, at least in principle,
if properly used.

The basis sets commonly used are composed of the
usual real L? functions vanishing at the boundaries. In
addition, it is also necessary to include auxiliary basis
functions which do not vanish at the boundary located
in the direction of dissociation for the scattering wave-
functions involved to be truthful solutions throughout
the defined region. These functions must vanish at the
other boundaries to yield regular scattering wavefunc-
tions. For convenience, we call such functions boundary
functions to emphasize their nonvanishing behavior at
the appropriate boundaries. Further classification of
these methods can be made according to (1) whether the
scattering wavefunctions are defined in an infinite range
or only in a finite range; (2) whether the boundary
functions are scattering energy-independent or energy-
dependent; (3) whether the integrals of the matrix ele-
ments are energy-independent or energy-dependent;
(4) whether the integrals are real or complex quantities.
Such characteristics may affect the performance of a
particular approach, such as the rate of convergence to
exact results or the amount of computation to achieve
a given accuracy.

In this work we deal exclusively with truthful repre-
sentations of scattering wavefunctions in a finite range
(we choose the L?> basis function to vanish at the
boundaries of the finite region). In this particular case,
the boundary functions can be chosen as energy-inde-
pendent and real functions. This choice enables all in-
tegrals to be real quantities and reusable for scattering
calculations at other energies, which is a useful feature in
studying resonances, e.g., [2, 9]. In spite of such formally
advantageous features, the calculated wavefunctions are
sometimes not uniformly accurate in the defined range
(see below for details). For example, when the basis
functions are not capable of representing arbitrary
functions near the boundary, the accuracy decreases
there [10]. This behavior was observed when a truncated
basis set (whose zeroth-order energies are below the
chosen cutoff values) and/or the particle-in-a-box
eigenfunctions (or equivalents) are used [10]. To avoid
such undesirable influences, scattering information was



extracted somewhat inside the range [10], or energy-
dependent boundary functions were used in previous
studies [11]. Unfortunately, in the latter case, the noto-
rious Kohn anomaly may occur at some scattering
energies at which real energy-dependent boundary
functions become linearly dependent on the other real L?
basis functions [12].

After narrowing down the cause of such inaccuracy
to the unfavorable boundary conditions of certain
functionals involved in the calculation, we develop a
novel form of boundary function in this work. It allows
the scattering wavefunction to be much more uniformly
accurate and the integrals to be energy-independent and
real. Also, the numerical results are guaranteed to be free
of the Kohn anomaly.

In a somewhat nonrelated context, the degradation of
wavefunction accuracy close to the boundary is also
observed when a truncated basis set, trimmed from a
primitive basis set according to a cutoff radius criterion,
is used (i.e., when only the basis functions acting near
the interaction region are kept for the subsequent
calculation). Such truncation is often desirable when
studying generic reactive scattering, in which the coor-
dinate system for basis set definition cannot be super-
imposed on the natural scattering and internal motion
coordinates (e.g., Jacobi coordinates).

In this work, we improve the accuracy of the wave-
function, by forcing the component of the scattering
wavefunction expanded by the L? basis set to vanish
smoothly toward the basis set boundary. This may be
done by modifying the regular SE near the boundary in
a prescribed way. It turns out that the solution to this
modified SE is still truthful and more accurate than
otherwise in the inner region where no modification is
applied (see below).

2 Theory

We detail the theory of the present two novel approaches
below. For simplicity of presentation, we consider one-
dimensional scattering with one channel open; the
generalization for higher dimensional problems should
be straightforward.

In the finite range scattering wavefunction (FRSW)
method [2], the linearly independent solutions of the SE
in a finite range are determined by solving appropriate
matrix-vector equations. Then, the scattering wave-
functions satisfying asymptotic boundary conditions
(e.g., the unit-flux incoming wave boundary conditions)
are determined by matching the solutions to the known
asymptotic behavior. Mathematically, the matching
procedure is equivalent to setting up a system of linear
equations for unknown scattering matrix elements and
expansion coefficients of the solutions, and subsequent-
ly, solving for the unknowns.

A particular linearly independent solution y/ of the SE
in a finite range [a,b] is represented by a boundary
function, F and real L2 basis functions {¥;} as follows.

y=F+y=F+) Cl (1)
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where F satisfies the so-called (0, 1) and ¥; satisfies (0, 0)
boundary conditions in the range [a,b] (i.e., F(a) =0,
F(b) =1, and V;(a) = V;(b) = 0) [9]. The range [a, D] is
chosen to encompass the interaction and minimal
asymptotic regions (here, we assume the regions around
both ¢ and b are in the asymptotic regions). The
expansion coefficients C; are determined such that
Eq. (1) could give the approximate solution of the SE,
(H—E)|y) =0, where H is the system Hamiltonian
operator and E is the scattering energy

VilH — El) = (Vj|H — E|F)
+Z<V,»|H—E|V,~>ci =0 . (2)

2.1 Novel boundary function

Note that if F in Eq. (2) is chosen to behave asymptot-
ically as the regular solution ¢ of the unperturbed SE,
ie., (Hy—E)|¢) =0 where Hy=H — U and U is the
interaction potential, (H — E)|F) vanishes asymptotical-
ly. It is observed that such a scattering energy-dependent
boundary function yields more uniformly accurate
than a fixed energy-independent F could do in general
cases (see below for an example). The disadvantage
of this energy-dependent F is that the integrals
(V;JH — E|F) have to be recalculated for each different
choice of scattering energy £ and the results may be
subject to the Kohn anomaly if it is chosen as a real
function. The cause of the Kohn anomaly is given
elsewhere [12].

In this work, we consider a particular form of F,
which is given by f; + E - f> where fi and f> are energy-
independent fixed real boundary functions. In particular,
we determine f; and f; by requiring that
(H — E)|fi + E - f>) vanishes at both boundaries @ and b.
The practical procedure for finding f; and f; is given
below where Hj is just kinetic energy operator. Let F be
a quartic polynomial with the expansion coefficients
determined to satisfy the desired boundary conditions,

F(R) = pR + qR* + uR® + vR* (3)
such that
(H-E)F)y=0atR=a, R=b

and F(a) =0, F(b) =1 4)

where p, g, u, v are some constants for a particular choice
of [a,b]. F, obtained by solving the system of linear
equations implied by Egs. (3) and (4), is given by

F(y)=AH0)+E- f2(y) (5)
fily) = %y + %yz - %y“

m(b—a)’ [ 1 1, 145 1,
L) == <]2y+20y 57~ 5” )
where y is related to the scattering coordinate R by a
scaling factor y where y = “=5——% and m is the system
reduced mass. All the related ‘integrals are real and
energy-independent ((VIH|fi), (VIHI|f). (Vlfi). and
(Vilf2)). The matrix elements involving F in Eq. (2) are
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simply constructed by their combinations with the
scattering energy E or its square as multiplicative factors
in an obvious manner. Note that the functions derived in
Eq. (5) are universal and also usable for other systems.
This choice of boundary function yields a much more
uniformly accurate y, which is automatically free of the
Kohn anomaly . These points will be demonstrated by
test calculations below.

The reason behind this better performance may be
understood by noting that (H — E)|F) satisfies (0,0)
boundary conditions unlike in the case of arbitrary
boundary functions. This has the following conse-
quences. Often, the basis set with (0,0) boundary con-
ditions used to expand y of Eq. (1) is composed of the
eigenfunctions of the asymptotic Hamiltonian Hy. Then,
(H — E)|y) obviously has the same (0,0) boundary con-
ditions. In this case, since (H — E)|y) can be written as
(H —E)|F) + (H — E)|y), the fact that (H — E)|F) satis-
fies the same (0, 0) boundary conditions helps (H — E)|)
to satisfy (0,0) boundary conditions more easily than
otherwise. Therefore, the equality implied by the SE can
be easily achieved numerically. In addition, since all parts
composing the integrand in Eq. (2) satisfy the same (0, 0)
boundary conditions of the Gaussian quadratures based
on {V;}, the integrals should be evaluated more accu-
rately as a sum of quadratures than otherwise.

2.2 Basis truncation

When a reactive scattering problem is studied, the range
of the (0,0) boundary condition basis set (which is often
a direct product of basis functions in several dimensions)
must encompass the interaction plus some asymptotic
regions. By doing so, some extra regions, covered by the
basis set, are inevitably included. For example, these
may be the classically forbidden region for the scattering
energy considered, or the asymptotic region not needed
for scattering information extraction. They are not
necessary for the subsequent scattering wavefunction
calculation.

A common method to avoid such waste is to simply
discard the basis functions corresponding to the extra
regions. This is particularly simple to do for a point-wise
basis set like the discrete variable representation (DVR)
basis [13,14], and we restrict ourselves to this kind of
representation. The subsequent calculation produced
somewhat accurate results in the past [3,15]. However,
in the present work, a close investigation of the wave-
function behavior in a one-dimensional case reveals that
the truncated basis set results are less accurate than
otherwise. The results obtained using all the primitive
basis functions are much more accurate, even when the
number of basis functions and ranges are about the same
in both cases (see below).

Before discussing the cause behind this observation, it
may be helpful to distinguish two different types of
truncation, i.e., by a potential energy criterion and by a
cutoff radius criterion. The truncation warranted by the
former criterion should cause essentially no complica-
tion. The scattering wavefunction vanishes smoothly
into the classically forbidden region for physical reasons,

so it should cause no numerical error if the basis func-
tions located in that region are not included in the cal-
culation from the beginning. To describe the scattering
wavefunction accurately we only need to ensure that
the boundary function F also vanishes in this region. In
other words, it is known that the corresponding expan-
sion coefficients would be essentially zero if the dis-
carded functions were included before any numerical
calculations were made. In passing, we note that ignor-
ing a particular basis function is equivalent to setting the
corresponding coefficients to zero in terms of the full
primitive basis set representation.

On the other hand, the portion of the wavefunction
which would be expanded by the basis functions dis-
carded by a cutoff-radius criterion does not necessarily
vanish for any physical reason. Effectively, it is equiva-
lent to setting the coefficients to zero rather abruptly for
those discarded functions which are located beyond the
cutoff radius in terms of the full primitive basis set
representation. This may result in nonphysical discon-
tinuities in the scattering wavefunction and/or its
derivatives being responsible for the inaccurate results.

To avoid such abrupt change in the solution, we
modify the SE near the cutoff radius (which is now the
boundary of the truncated basis set) so that we arbi-
trarily force y to vanish smoothly toward (and beyond)
the boundary as follows;

(1=g)(H—=E)F+7) +glx) =0 (6)

where ¢ is a kind of cutoff function which is zero for most
of the basis set range and increases slightly toward the
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Fig. 1. Schematic representation of the Eckart barrier problem. The
parameters of the Hamiltonian operator are chosen as m = 4.3 g/
mol, & =3.0A"!, D=10cm~'. The Eckart barrier is denoted by
U, the magnitude squared of the scattering wavefunction at
E=6cm™! by \'P*\z and a sample boundary function (Eq. 5) by
F which increases from zero to unity on Grid A passing from left to
right. The asymptotic boundary conditions are denoted by
“Ip —So0p” and “—S810,” in the reactant and product regions,
respectively, where the subscripts 0,1 denote the reactant and
product waves and /, O denote the incoming and outgoing waves,
respectively, while Sy, S; are scattering matrix elements determin-
ing the reflection and transmission probabilities, respectively. Grid
A corresponds to the full basis set used for Fig. 2 and Grid B defines
the primitive basis set, from which the truncated basis set used for
Fig. 3 is obtained. Both grids are spaced by 0.2 A



outer boundary b. In this way, the scattering wavefunc-
tion F + y transforms smoothly into F toward the
boundary, while the aforementioned unfavorable dis-
continuities are alleviated. Note that this modification
corresponds to forcing the expansion coefficients implied
in y to vanish smoothly toward the boundary in a point-
wise representation such as DVR. As long as we extract
the scattering information where the solution is truthful
(i.e., away from the boundaries), the results should be
more accurate than otherwise (see below for an example).

3 Compartive calculation and discussion

We combine the present novel boundary functions with
the FRSW method [2] to calculate the transmission
probabilities of an incoming particle through a one-
dimensional Eckart barrier [16]. The Hamiltonian oper-
ator and wavefunctions are represented by the DVR
based on the particle-in-a-box eigenfunctions and also
all integrals involved are evaluated by the Gaussian
quadratures based on the same eigenfunctions. The SE
equation to be solved is

W d?
 2mdR?

D

cos h2(aR) V=LY

()

Fig. 2a—d. Comparisons of
numerical results obtained by
the previous and present ap- 2 4

Energy(cm'1)

6
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where the system parameters are given in the legend to
Fig. 1.

A schematic representation of the barrier, a sample
novel boundary function, the magnitude squared of a
sample scattering wavefunction, and the grids of DVR
used for actual calculations are presented in Fig.1. In the
present application of the FRSW method, two linearly
independent solutions of the SE are obtained first by
solving Eq. (2) adopting two boundary functions of the
form of Eq. (5) (these are mirror images through the
peak of the barrier). Then, the scattering wavefunction
Y*, which satisfies the unit-flux incoming wave boun-
dary condition, is obtained by matching the linear
combination of the above two solutions to the appro-
priate asymptotic boundary conditions. The actual
location of matching is at Ry, R, on the product side
asymptotic region (matched to —S,0y), and at R3, R4 on
the reactant side asymptotic region (matched to
Iy — Sp0y), respectively, as follows:

W (R) = A¥(R) + BY(R) = -5 \/fexpum,-), )

[ Rex(ier,)

P*(R)) = A¥(R)) + BY(R))

- So\/%exp(—ikRj)

Energy(cm‘1)
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where R; and R; are the centers of the appropriate DVR
basis functions in each asymptotic region, respectively,
and £ is the wavenumber of a chosen scattering energy E.
The transmission probability is given as |S;|?, obtained
from solving the appropriate system of linear equations
for the unknown constants, 4, B, Sy, and Sj.

In Figs. 2 and 3 we compare the magnitude of ab-
solute errors in numerical results against the analyti-
cally exact transmission probabilities [16] for three
different choices of boundary function: (A) real solu-
tions of the unperturbed SE (i.e., sin(kr) and cos(kr));
(B) fixed linear functions; (C) parametrically energy-

Fig. 3a—f. Comparisons of nu-
merical results obtained by the

Energy(cm™)

dependent boundary functions [see Eq. (5)], among
which the last is new. For the energies considered here
([tlem~! 11cm™!]), the transmission probabilities vary
from ~0.18 to ~0.85 as the scattering energy increases.
Also, the squares of the magnitudes of the scattering
wavefunctions are plotted along the scattering coordi-
nate in the product asymptotic region at the scattering
energy of 6¢cm™!, which is in the middle of the energy
range considered. The magnitude in the product as-
ymptotic region should be identical to the transmission
probability, so it must be essentially constant, in an
accurate calculation.

Energy(cm™)
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3.1 Test for novel boundary function

An examination of the absolute errors in the transmis-
sion probabilities of Fig. 2 reveals that the least accurate
results are for (B) among the three cases, although the
errors are less than 0.001 for most of the energies. The
most accurate results are for (A) or (C), depending on
the matching locations. If the matching is done closest to
the boundary, (A) of the previous approach gives better
accuracy (Fig. 2a), but if matched somewhat inside the
range, (C) of the present approach is better than (A)
(Fig. 2¢). For both (B) and (C), the accuracy improves
by about an order of magnitude if matching is done
somewhat inside the range than if done at the outermost
points, while there is no significant improvement for (A)
(cf Fig. 2a and 2c).

These trends in relative magnitude of errors are also
reflected in the behavior of the squares of the magni-
tudes of the scattering wavefunctions. They become al-
most constant in the asymptotic region for (A) and (C),
but not so for (B), although (A) appears slightly better
than (C) (Fig. 2b and 2d).

These observations suggest that the use of the present
novel boundary functions is definitely better than that of
the fixed linear function, but may not be significantly
better than the use of previous energy-dependent boun-
dary functions in terms of the relative uniformity of
wavefunctions. However, we emphasize that the amount
of numerical computation is essentially the same and
relatively small for both (B) and (C) if calculations are
done for many energies while (A) requires recalculation
of (V;|H — E|F) for each energy. Besides, there is a
danger of a Kohn anomaly in the results for (A) which
does not occur in this particular calculation (see below
for an opposite example).

3.2 Test for modified SE for truncated basis set

Next, we consider the results of using a truncated basis
set. We retain part of the primitive DVR basis functions
whose centers are located inside a cutoff radius from the
peak of the barrier for the subsequent scattering calcu-
lations (Fig. 1). In Fig. 3 we compare the results of the
regular brute force truncation calculations with those
done by applying the modification of Eq. (6). Though the
size and range of the basis set is about the same as for Fig.
2 calculations which use all the primitive basis functions,
the absolute errors are generally larger in this case.
However, the present approach of SE modification
clearly improves the accuracy for (A), (B), and (C), by
up to an order of magnitude for most of the energies (cf.
Fig. 3a and 3d, Fig. 3b and 3e). There are no clear
differences in accuracy among the three cases without
modification (Fig. 3a—c), but modification introduces
greater improvement for (A) and (C) than for (B) (Fig.
3d-f). This is even more obvious if the matching is done
somewhat inside (cf. Fig. 3a and 3d, Fig. 3b and 3e).
The peaks in the error curves in case (A) are a
consequence of a Kohn anomaly. Either of the two
energy-dependent boundary functions (sin(kr) or
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cos(kr)) appears to vanish at the boundaries of the
symmetric range around the energies of the peaks
(~1em™!' ~4.5cm™!, and ~9.5 cm™"). Therefore, even
if the results are more accurate in case (A) for some of
the energies, it may be best to use (C) for general pur-
poses because of the better stability in accuracy and
greater savings in the amount of computation (The dips
denote that the sign of errors are changing).

The magnitude squared of scattering wavefunctions
behavior clearly shows how much the present modifi-
cation of the SE improves the accuracy of the results for
all types of boundary functions tested, especially if
matching is done somewhat inside the range (cf. Fig. 3¢
and 3f).

4 Concluding remarks

The present novel boundary functions allow all the
integrals to be energy-independent and real while
maintaining about the same level of accuracy as
provided by the more computationally demanding
energy-dependent-integral approaches. Also, the present
modification of the SE may allow the size of matrix
involved to be greatly reduced for multidimensional
scattering problems while achieving more improved
accuracy than no modification provides. The two novel
approaches presented in this work are expected to be
most useful for reactive scattering problems in more
than one-dimensional mathematical space where the
efficiency and accuracy implied by a particular algorithm
would essentially determine whether the actual calcula-
tion is doable or not.
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